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ABSTRACT: We present a novel scaling theory to describe the interaction free
energy within a compressed polymer-brush bilayer. For semidilute brushes at
intermediate and strong compressions, we predict that the interaction free energy
scales with distance, D, between the grafting surfaces as A(D) ∼ D−2.5; i.e., the
repulsive force, f(D) ∼ D−3.5, measured at the surfaces increases more strongly upon
compression than predicted by the classical theory of Milner, Witten, and Cates. We
find good agreement with experimental data and excellent agreement with numerical
results, which follow our analytical predictions over a wide range of surface
separations. The theory is based on the assumption of a strong correlation of the
repulsive force and the interpenetration between the brushes. Using our numerical
data, we can demonstrate this correlation with great precision.

Grafting linear macromolecules densely onto a surface with
one chain end, such that the steric repulsion between the

monomers forces the chains to stretch away from the surface
and form a polymer brush,1 is the best way known to us to
minimize frictional losses between surfaces during shear
motion.2 Therefore, polymer brushes seem to play an
important role in biolubrication.3 Controlling the repulsive
forces between polymer-brush-covered surfaces is essential for
many technical applications, such as the stabilization of
colloidal dispersions in ink and paint4 or the construction of
artificial joints.5

The repulsive forces between two polymer brushes placed on
top of each other (polymer-brush bilayer) have been studied
theoretically,6,7 experimentally,3,8−12 and via computer simu-
lations13−15 rather extensively over the past two decades. To
date, the most popular analytical approach is the mean-field
theory of Milner, Witten, and Cates (MWC),6 which is
expected to hold in the asymptotic limit of very long chains.
Expressed by the molecular parameters of a compressed brush,
i.e., chain length, N, and grafting density, σ, the MWC theory
predicts a free energy per chain which reads6
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where dh = h/h0 is the reduced distance between the surfaces, h
the height of the compressed brush, and h0 the height of the
free, unperturbed brush. kB, T, and vex, respectively, denote the
Boltzmann constant, temperature, and the excluded volume
parameter, characterizing the excluded volume per monomer.
The repulsive force per unit area follows from f(dh) = −∂A/∂dh.
In the limit of large compression, where h = D/2 (D being the
distance between the grafting surfaces) and dh = d ≡ D/2h0 →
0, one obtains from eq 1

→ ∼ −A d d( 0) 1
(2)

Equations 1 and 2 are put to a test in Figure 1, where we plot
the interaction free energy per unit area16 as a function of the

reduced distance d for a selection of previous experimental and
new numerical data.17 The experimental systems consist of
both diblock copolymers, anchored by either a PEG or PI
block,10,12 and a single zwitterionic anchoring group.8 On a
double-logarithmic scale, clear deviations from the MWC
theory are found. This is also the case for alternative
approaches, such as the theory of Alexander and de Gennes,18
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Figure 1. Interaction free energy per unit area (arbitrary units) as a
function of reduced distance for data from MD simulations and SFA
experiments in toluene of the following diblock copolymers/polymers,
where the second block indicated is the anchor block/group: PS37k/
PEG5k and PS88k/PEG5k;12 PS26k/X and PS140k/X, where X is the
zwitterionic group (CH2)3N

+(CH3)2(CH2)3SO3
− as indicated in ref 8;

and PI50k/PVP26k and PI69k/PVP38k.10 The last column in the
legend is the mean distance between grafting points. We compare to
the theory of Milner, Witten, and Cates [MWC, see eq 1] and to our
new approach, which states A(d) ∼ d−2.5 [see eq 12].
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who predict A(d → 0) ∼ d−1.25 for asymptotically large chains.
In particular, a different behavior, A(d) ∼ d−2.5, is found for
large compressions. Note that this exponent also seems to
describe the data at intermediate distances.
At small compressions, the deviations from eq 1 can be

explained and accounted for by including polydispersity
effects.12 At very large compressions, one expects the MWC
theory to fail as higher-order terms of the equation-of-state
(EOS) become relevant, while the MWC theory assumes a
quadratic pressure dependence on the monomer density over
the entire range of surface separations. However, also there is
not a good agreement with the data in the regime of
intermediate densities.
One may try to rewrite A(dh) based on an EOS including

higher-order terms,12 but this approach only leads to a universal
description for systems with similar structures of the EOS.
Furthermore, the MWC theory does not allow the two brushes
to interdigitate.19 Hence, the repulsive force solely is a result of
the change in configurational entropy when the individual
brushes are compressed. This can only be correct in the regime
of strong stretching, i.e., in the asymptotic limit of the self-
consistent mean-field theory (SCMFT), where fluctuations of
the chain conformation around the path that minimizes the
(classical) action can be neglected.20 However, experiments and
simulations do not reproduce this limit. Instead, a clear
interpenetration between the brushes can be demonstrated
either by neutron scattering,11 computer simulations,13−15,21 or
numerical self-consistent field modeling.22,23

In this Letter, we present an alternative approach, which
allows the brushes to interpenetrate (see Figure 2). Assuming

semidilute brushes under intermediate and large compressions
leads to a scaling behavior of the interaction free energy as
indicated in Figure 1, i.e., A(d) ∼ d−2.5. Furthermore, by means
of molecular dynamics (MD) simulations, we demonstrate a
strong correlation between the interaction free energy and the
amount of interpenetration between the brushes.
We consider a quasi-stationary compression of the bilayer,

such that at all distances thermal equilibrium demands a
uniform normal pressure profile throughout the bilayer. Upon
compression, an interpenetration zone is established in the
interface of the bilayer (see Figure 2). Within this zone,
interbrush interactions lead to a repulsion between the brushes.
As the brushes try to avoid interpenetration, the grafted chains
have to compress, and intrabrush interactions increase.
Mechanical equilibrium demands a balance between inter-
and intrabrush interactions; otherwise, the interpenetration

zone would either shrink or increase. In other words, inter- and
intrabrush interactions must provide the same contribution to
the interaction free energy.
It appears rather challenging to account for interpenetration

and chain deformation due to compression simultaneously.
However, the above argument shows that it is sufficient to
calculate the interaction free energy only in the interpenetration
zone, where the interbrush repulsion takes place, and that the
repulsive forces of a polymer-brush bilayer are determined
completely by the mutual brush interpenetration.
For semidilute bilayers under intermediate compressions, the

monomer density profile is uniform, and thus the size of
concentration blobs, ξ, is the same everywhere in the bilayer.
To first order, the interaction free energy per unit area then is
given as

∼A d n k T( ) i B (3)

where ni denotes the number of concentration blobs within the
interpenetration zone.
This approach is very different from the original blob picture

by Alexander and de Gennes,18 who calculate the interaction
free energy from all the concentration blobs of two non-
interpenetrating brushes. Such a procedure does not account
for the interpenetration between the brushes.
We next derive an expression for the number of

concentration blobs per unit area, which are located inside
the interpenetration zone of width l. To this extent, we write

=n cl g/i (4)

where c = 2Nσ/D is the monomer concentration of a
semidilute bilayer with uniform density profile. The number
of monomers in the concentration blob can be derived via21,26

ξ σ∼ ∼ ∼ν ν ν− −g a ca N a D( / ) ( ) ( / )1/ 3 1/(1 3 ) 3 1/(1 3 )
(5)

where a is the monomer size and ν ≈ 0.588 is the Flory
exponent.
The interpenetration width, l, has been calculated in an

earlier study.21 The starting point is the interpenetration width
under melt conditions for a bilayer at compressions with h =
D/27,24

∼l N a D( / )melt 2 4 1/3
(6)

This relation follows from assuming a parabolic molecular field
for the single brush and allowing for fluctuations of the brush
height beyond the mean brush height h.25 With the
transformation26

ξ→ →N N g a/ and (7)

one finds for a semidilute bilayer under intermediate and strong
compressions21

σ∼ ν ν ν ν− − −l a N a a D[ ( ) ( / ) ]2 2 2(1 2 ) 1 1/3(3 1) (8)

This relation has been tested using MD simulations.27 Using
eqs 4 and 5 yields

σ∼ ν ν ν ν− + + −n a N a a D[ ( ) ( / ) ]i
2 11 2 2 5 8 1 1/3(3 1)

(9)

as the number of concentration blobs per unit area in the
interpenetration zone. Thus, from eq 3, we finally obtain

σ∼ ν ν ν ν− + + −A d k Ta N a a D( ) [ ( ) ( / ) ]B
2 11 2 2 5 8 1 1/3(3 1)

(10)

Figure 2. Schematic of a compressed polymer-brush bilayer. In the
interpenetration zone, interbrush interactions lead to a repulsion
between the brushes. The width of the interpenetration zone, l, is
determined by the balance between inter- and intrabrush interactions.
The latter predominantly occur outside the interpenetration zone,
where the grafted chains are compressed.
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which states that the interaction free energy per unit area scales
with d = D/2h0 as

∼ ν ν+ −A d d( ) (8 1)/3(1 3 ) (11)

With ν ≈ 0.588, this yields approximately

∼ −A d d( ) 2.5
(12)

which motivates the exponent introduced in Figure 1.
Regarding this result, one may criticize that the compression

cannot be sustained solely by the interpenetration since the
zone of overlap between the brushes is rather small compared
to the entire width of the bilayer. Even though this is true for
intermediate (and small) compressions, the above argument
shows that this contribution to the free energy change upon
compression must be of the same functional form as for the
total bilayer.
To demonstrate this, one could measure the interpenetration

width and try to see how it relates to A(d).28 While this is a
difficult task for experimental systems,11 it can be performed
rather easily in numerical studies. However, the interpenetra-
tion width has to be extracted from the monomer density
profiles, and this is not very precise and also a rather large
effort. Instead, we characterize the amount of interpenetration
via the number of binary monomer contacts between the
brushes, I(d). Previous investigations15,21,27−30 have shown a
strong correlation between I(d) and the response of the bilayer
to shear motion, indicating that I(d) should be strongly related
to the amount of interpenetration.
Figure 3 shows our numerical data for I(d) and A(d) as a

function of the reduced distance. The correlation between the

two functions is remarkable; it is even possible to shift I(d) with
an (arbitrary) factor such that the two functions coincide with
great precision. This clearly demonstrates a strong correlation
between the amount of interpenetration and the repulsive force
measured at the surfaces.
Finally, we emphasize that the validity of eq 10 is limited to

moderate compressions. At small compressions, where the
brushes just come into contact, the size of concentration blobs
is nonuniformly distributed over the bilayer. In the middle,
where the monomer density is small, ξ is larger than close to
one of the surfaces. Moreover, polydispersity effects can
become important for small compressions. In the opposite
limit of very large compressions, the bilayer attains melt

density, and the explicit EOS comes into play. This can be seen
in Figures 1 and 3 for the numerical data, which reveal a slight
increase toward a somewhat larger exponent for very large
compressions (d ≤ 0.1). Since experimental chains are much
larger than those in the simulation, the deviations appear at
even smaller values of d, in a regime beyond the accessibility of
current experiments.31

So far, we focused on the dependence of A on the distance
between the surfaces. Future studies may test eq 10 with
respect to the molecular parameters (N and σ) of the brushes.
Because of their relevance in biological systems, approaches
similar to the one presented here may be developed for
polyelectrolyte brushes, if possible.
In conclusion, we present a novel, rather simple, and

straightforward way to calculate the interaction free energy (or
the repulsive forces) for intermediately and strongly com-
pressed polymer-brush bilayers. Our approach is based on the
assumption that A(d) is closely related to the amount of
interpenetration between the brushes. We have shown this
correlation by means of MD simulations.
The essential idea underlying our scaling theory has already

been applied to sheared bilayers. Together with these results,
our approach provides a consistent picture describing com-
pressed bilayers not only in equilibrium but also in stationary21

and nonstationary29 shear motion.
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